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To improve our understanding of seasonal-to-
decadal predictability in the Atlantic Sector
✦Development of a Climate prediction 

system 
✦Predictability of Subpolar Gyre 
✦What mechanisms support the 

predictability? 
✦How to enhance the predictability base 

on our understanding? 

✦Tool:  Norwegian Climate Prediction 
model (NorCPM)
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Chapter 11 Near-term Climate Change: Projections and Predictability
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Climate projection
A climate projection is a climate simulation that extends into the future based on a scenario of future external forcing. The simulations 
in Box 11.1, Figure 1 become climate projections for the period beyond 2005 where the results are based on the RCP4.5 forcing scenario 
(see Chapters 1 and 8 for a discussion of forcing scenarios).

Climate prediction, climate forecast
A climate prediction or climate forecast is a statement about the future evolution of some aspect of the climate system encompassing 
both forced and internally generated components. Climate predictions do not attempt to forecast the actual day-to-day progression of 
the system but instead the evolution of some climate statistic such as seasonal, annual or decadal averages or extremes, which may 
be for a particular location, or a regional or global average. Climate predictions are often made with models that are the same as, or 
similar to, those used to produce climate simulations and projections (assessed in Chapter 9). A climate prediction typically proceeds 
by integrating the governing equations forward in time from observation-based initial conditions. A decadal climate prediction com-
bines aspects of both a forced and an initial condition problem as illustrated in Box 11.1, Figure 2. At short time scales the evolution is 
largely dominated by the initial state while at longer time scales the influence of the initial conditions decreases and the importance of 
the forcing increases as illustrated in Box 11.1, Figure 4. Climate predictions may also be made using statistical methods which relate 
current to future conditions using statistical relationships derived from past system behaviour. 

Because of the chaotic and nonlinear nature of the climate system small differences, in initial conditions or in the formulation of the 
forecast model, result in different evolutions of forecasts with time. This is illustrated in Box 11.1, Figure 1, which displays an ensemble 
of forecasts of global annual mean temperature (the thin purple lines) initiated in 1998. The individual forecasts are begun from slightly 
different initial conditions, which are observation-based estimates of the state of the climate system. The thick green line is the average 
of these forecasts and is an attempt to predict the most probable outcome and to maximize forecast skill. In this schematic example, the 
1998 initial conditions for the forecasts are warmer than the average of the simulations. The individual and ensemble mean forecasts 
exhibit a decline in global temperature before beginning to rise again. In this case, initialization has resulted in more realistic values for 
the forecasts than for the corresponding simulation, at least for short lead times in the forecast. As the individual forecasts evolve they 
diverge from one another and begin to resemble the projection results. 

A probabilistic view of forecast behaviour is depicted schematically in Box 11.1, Figure 3. The probability distribution associated with 
the climate simulation of temperature evolves in response to external forcing. By contrast, the probability distribution associated with 
a climate forecast has a sharply peaked initial distribution representing the comparatively small uncertainty in the observation-based 
initial state. The forecast probability distribution broadens with time until, ultimately, it becomes indistinguishable from that of an 
uninitialized climate projection.

Climate predictability
The term ‘predictability’, as used here, indicates the extent to which even minor imperfections in the knowledge of the current state or 
of the representation of the system limits knowledge of subsequent states. The rate of separation or divergence of initially close states 
of the climate system with time (as for the light purple lines in Box 11.1, Figure 1), or the rate of displacement and broadening of its 

Box 11.1 (continued)

Box 11.1, Figure 2 |  A schematic illustrating the progression from an initial-value based prediction at short time scales to the forced boundary-value problem of 
climate projection at long time scales. Decadal prediction occupies the middle ground between the two. (Based on Meehl et al., 2009b.)

 (continued on next page)

Seasonal-to-Decadal Prediction

✦ Seasonal-to-decadal prediction depends on  initial condition and forcing 
✦ Most of the predictability is in the ocean (larger inertia and heat capacity) 
✦ Prior attempt shows potential using simple initialization method: 

Keenlyside 08, Smith 08, Pohlman  09…
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IPCC AR5 
(adapted from Meehl et al., 2009)

Progression from initial-value problems with 



Climate Projection
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✦ Considering only 
external forcing.

Ensemble climate projection



✦ Assimilate observation 
to NorESM. 

✦ Nudge U, V, T of 
atmosphere 

✦ Assimilate SSTA/SST to 
ocean 
• EnKF-SSTA 
• EnKF-SST

Norwegian Climate Prediction Model
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"Developed novel scheme to reduce drift of EnKF assimilation in isopycnal ocean model, Wang et al."



✦ Observed global temperature, Modeled global temperature, 
Constrained initialization, and Prediction with different initialization

Initialization of Earth System Model
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2.4.1 Full-field initialization

Biases in full-field initialized hindcasts or forecasts may be

removed by applying an a posteriori lead-time dependent
correction diagnosed from a set of hindcasts (Stockdale

1997):

Ŷjt ¼ Yjt "
XN

k¼1

ðYkt " OktÞ=N ð1Þ

where Yjt and Ŷjt are the raw and bias-adjusted values

respectively for hindcast or forecast j at lead time t, Okt are

the observed values corresponding to hindcast Ykt, and N is
the number of hindcasts that can be assessed against

observations.

By definition, this will result in zero bias averaged over
the hindcasts themselves. This is unrealistic and likely to

lead to skill assessed over hindcasts that is higher than

could be achieved for actual forecasts for which the bias is
unlikely to be zero. A cross validated bias correction is

therefore frequently used in an attempt to obtain a more

realistic estimate of forecast skill. In this case, the bias is
computed over all hindcasts apart from the one being

adjusted:

Ŷjt ¼ Yjt "
XN

k¼1
k 6¼j

ðYkt " OktÞ=ðN " 1Þ ð2Þ

The result of adjusting the bias using Eq. (2) is shown in

Fig. 2c, where values are plotted as anomalies by removing

the observed mean of our hindcast period (1960–2009).

Clearly this procedure has successfully adjusted the bias
such that hindcasts and observations are in good

agreement. We note, however, that for small hindcast

sets cross validation may introduce noise leading to an
underestimate of forecast skill, and we therefore evaluate

skill both with and without cross validation (Sect. 3).

In seasonal forecasting it is common to provide forecasts
and assess skill in terms of anomalies. In this case observed

values are not required for bias correction if anomalies are

expressed relative to the average of the hindcasts:

Ŷjt ¼ Yjt "
XN

k¼1

Ykt=N ð3Þ

This is potentially advantageous since errors in the bias
correction arising from a finite sample of imperfect

observations (Okt) are avoided. However, decadal forecasts

of trending variables, such as surface temperature, are
difficult to interpret with this approach. This is illustrated for

the final hindcast (starting in 2009) in Fig. 2c, for which the

black and grey curves show the effects of adjusting bias
according to Eqs. (2) and (3) respectively. The observed

trend has effectively been removed by using Eq. (3) (grey

curve). This is because the model climatology from which
forecast anomalies are expressed is computed over a

different climatological period for each forecast lead time:

for the first year it is the period 1961 to 2010, whereas for the
tenth year it is the warmer period 1970–2019, such that the

trend is contained in the different climatologies rather than

Fig. 2 Illustration of bias correction for full field (left) and anomaly
(right) initialization. Thin black curves show the observed time series
of annual mean global temperature (from HadCRUT3, Brohan et al.
2006). Coloured curves show the ensemble mean hindcasts, with
different colours showing different start dates. The upper panels
a, b show absolute values (K), and the lower panels c, d show
anomalies after adjustment for model biases (see text for details). The

solid grey and black dashed curves in (a) and (b) show values from
the assimilation and ensemble mean transient (TRAN) integrations,
respectively. The final hindcast (starting in 2009) is highlighted as a
thick black curve in (c), together with an alternative bias adjustment
(grey curve) obtained by removing the model climatology computed
from the average of all hindcasts

3328 D. M. Smith et al.

123

[Smith et al., 2013, CD]



Norwegian Climate Prediction Model
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✦ Assimilate observation 
to NorESM. 

✦ Nudge U, V, T of 
atmosphere 

✦ Assimilate SSTA/SST to 
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Observed SST data can constrain Nordic Sea 
Atlantic Layer
✦Free, EnKF-SSTA analysis, Observation
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Temperature)anomaly) Salinity)anomaly)
~ 2o Ocean



              Observed SST data captures the 
weakening of the North Atlantic Subpolar 
Gyre (SPG) in the mid-90’s 
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Prediction with Anomaly Initialization
✦ No skill found in predicting SPG index. 
✦ North Atlantic Subpolar Gyre Strength: Observed, EnKF-SSTA 

analysis, Free run, Prediction

10

~ 2o Ocean 
Starting in 1995 
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Prediction with Anomaly Initialization
✦ No skill found in predicting SPG index. 
✦ North Atlantic Subpolar Gyre Strength: Observed, EnKF-SSTA 

analysis, Free run, Prediction
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~ 2o Ocean 
Starting in 1995 

~ 1o Ocean 
Starting in 1995 
(CMIP5 NorESM-ME)
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✦ SPG index is box-averaged SSH [60W-15W,48N-65N] 
✦ North Atlantic Subpolar Gyre Strength: Observed, EnKF-SSTA 

analysis, Free run, Prediction/Prediction
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~ 1o Ocean 
Starting in 1995 
(CMIP5 NorESM-ME)

~ 1o Ocean 
Starting in 1998 
(CMIP5 NorESM-ME)

Skill Change due to Different Ocean 
Resolution



Norwegian Climate Prediction Model
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Predication Approach with Full Field 
Initialization
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Snow Initialization
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FF ocean init.FF atmosphere init.

✦ Snow cannot be properly initialized with full-field ocean initialization 
(EnKF-SST analysis).



Snow Initialization
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FF ocean init.FF atmosphere init.

✦ Snow cannot be properly initialized with full-field ocean initialization 
(EnKF-SST analysis).



To improve our understanding of seasonal-to-
decadal predictability in the Atlantic Sector
✦ Ongoing work 

• Development of a Climate prediction system 
✦To prepare full-field (atm & ocean) initialization (NorESM-ME, CMIP5) 
✦To test the skill of atmosphere nudging in initializing land surface 
✦ (For seasonale-to-decadal prediction towards CMIP6) 

• Mechanisms of the predictability 
✦To compare with dataset 

• World Ocean Atlas 2013 (decadal periods: 84-94, 95-04) 
✦To evaluate the impacts of ocean heat content and subsurface hydraulic 

features
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NorCPM Wiki
✦ NorCPM wiki first draft started: 
✦ Presentation page: 
✦ https://wiki.uib.no/norcpm/index.php/Main_Page 

✦ User Manual:  
✦ https://wiki.uib.no/norcpm/index.php/NorCPM_User_Manual

18Thanks for your attention. 



19

1984              1989              1994              1999              2004

1984              1989              1994              1999              2004

1984              1989              1994              1999              2004

30

28

26

24

22

20

(deg C)

30

28

26

24

22

30

28

26

24

(deg C)

(deg C)

Atlantic 1

Atlantic 2

Atlantic 3

60W 40W 20W 0 20E

60W 40W 20W 0 20E60W 40W 20W 0 20E

20N

EQ

20S

20N

EQ

20S

20N

EQ

20S

-4 -2 0 2 4 6 8 (deg C)

NorCPM(Assim_Anom) - HADISST2

NorESM(coarse ocean, mem01) -
HADISST2

NorESM(intermediate ocean, mem01) -
HADISST2

NorCPM(Assim_Full) - HADISST2

60W       40W        20W          0           20E

20N

EQ

20S
1 

2 
3 

HADISST2 
NorCPM(Full) 
NorESM 
NorESM (intermediate resolution for ocean) 



20

(Figure courtesy of Y. Wang)

Forecast 
Analysis 

Fixing assimilation drift

✦ Post-processing of negative 
value of DP by taking water 
from neighboring layers.

unphysical 

(Alina Barbu, thesis) 

group 
problematic 
layers until no 
unphysical 
values obtained

Layer thickness0
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✦ Ocean initialization 
✦ Base on HadISST 

✦ Atmosphere nudging 
✦ 26 level 100% relaxed to 

met data 
✦ Met data are interpolated 

from ERA-Interim

Ready for Prediction?

Ocean full-field initialization

Atmosphere 
Nudging



Skill due to Initialization
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ENSO interannual variability plays such a large role.

Even without the problem of spurious ENSO excitation,
there is scant evidence that ENSO can be predicted

beyond the seasonal time-scale (Kirtman et al. 2001; Jin

2008). Relatedly, Garcia-Serrano and Doblas-Reyes
(2012) conclude that multi-model prediction skill

declines during years when ENSO events are observed

because they are not predictable by the models in their
study.

4.3 Indian Ocean region

In the central Indian Ocean, where the warming trend is a

large source of the total variability, both the HDInit and
DAInit experiments outperform the statistical reference

forecasts at 6–9 year leads. At the 2–5 year lead, the HDInit

experiment shows a degradation of skill that is consistent
with the ENSO excitation discussed above (Tables 1, 2).

Neither HDInit or DAInit outperforms the NoInit
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Fig. 9 Average of correlation
coefficient distributions for the
HDInit forecasts (evaluated for
start-dates from 1961–2005).
Only those correlation scores
that exceed the ‘no-skill’
statistical reference forecast at
the 90 % confidence level are
plotted
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Fig. 10 Same as Fig. 9, but
only those correlation
coefficients that exceed the ‘no-
skill’ statistical reference
forecast at the 90 % confidence
and exceed the NoInit run at a
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An evaluation of experimental decadal predictions using CCSM4
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[Karspeck et al., 2014, CD]



Sea surface height: Correlation between 
observed and assimilation system
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F19tn21 anom 1993-2001 ME anom 1993-2001 

F19tn21 Full field 1993-2001 

(Figure courtesy of F. Counillon)



✦ Annual average over 1996 to 1997 
✦ Tropical bias is smaller. 
✦ Increasing bias over Subpolar gyre.

SST Bias of Two Different Experiments
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Initialized Ocean only Initialized Atmosphere



ERA-Interim/Land
✦ ERA-Interim/Land is a global reanalysis of land-surface parameters from 

1979-2010 at 80 km spatial resolution. It was produced with a recent 
version of the HTESSEL land-surface model. 

✦ Simulation with the latest ECMWF land surface model driven by 
meteorological forcing from the ERA-Interim atmospheric reanalysis and 
precipitation adjustments based on Global Precipitation Climate 
Project. ERA-Interim/Land preserves closure of the water balance and 
includes a number of parameterisations improvements in the land 
surface scheme with respect to the original ERA-Interim dataset, which 
makes it suitable for climate studies involving land water resources.
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✦ Annual average over 1996 to 1997 
✦ Overall bias is smaller; Increasing warm bias over Subpolar gyre.

SST Bias of Two Different Experiments
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Full-field Atmosphere initialization 
(Atmosphere nudging)

Anomaly initialization 
(EnKF-SSTA)
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Drift of SSH in FF-initialization Ocean
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