Bjerknessenterets mål er å forstå klima
til nytte for samfunnet.

Ny publikasjon

151 results

Havets varmetransport inn i Arktis har økt

Havets varmetransport inn i Arktis har økt Ellen Viste man, 11/23/2020 - 17:15 Havets varmetransport inn i Arktis har økt Havet har fraktet mer varme inn i de nordlige havområdene etter 2001, viser en ny studie. Strømmen av vann inn i de nordiske hav er blitt både varmere og sterkere.

Varmetransporten fra Atlanterhavet og inn i de nordiske hav har vært sju prosent høyere etter 2001 enn den var på 1990-tallet. Det viser en studie publisert i tidsskriftet Nature Climate Change i dag. 

I de senere år har temperaturen i Polhavet og i de nordiske hav steget, samtidig som sjøisdekket har minket. Den observerte økningen i varmetransport er stor nok til å kunne forklare det meste av disse endringene.

Forskerne bak studien har satt opp et detaljert regnskap for alle strømmer inn og ut av Polhavet og de nærmeste havområdene fra 1993 til 2016. Resultatene viser en markant økning i transporten av varme inn i de nordiske hav mellom 1998 og 2002.

– At vanntemperaturen økte, var ikke så uventet. Men et så stort sprang på noen få år overrasket oss, sier Kjetil Våge ved Bjerknessenteret og Geofysisk institutt ved Universitetet i Bergen.

Våge er en av forskerne bak studien, ledet av hans tidligere kollega Takamasa Tsubouchi, som nå jobber ved Japans meteorologiske institutt. 

Årsaken til økningen i varmetransport skyldes både at mer vann har strømmet inn sørfra og at vannet er blitt varmere. 

Takamasa Tsubouchi
Takamasa Tsubouchi ledet studiet av varmetransporten nordover i havet mens han jobbet ved Bjerknessenteret og Geofysisk institutt ved UiB. Bildet er tatt under et tokt ved nordøstkysten av Grønland i 2016. Foto: Stephan Krisch

Volumregnskapet må gå opp

Sjøvannet følger én hovedrute inn i Polhavet. Ruten går gjennom de nordiske hav, der varmt Atlanterhavsvann fra Golfstrømmen fortsetter nordover på begge sider av Island. I tillegg strømmer kaldere vann nordover langs vestkysten av Grønland og fra Stillehavet inn gjennom Beringstredet, men disse havstrømmene er svakere og frakter mindre varme.

Ut igjen er det to hovedveier. Vannet strømmer sørover i dypet på begge sider av Island og nær overflaten på begge sider av Grønland. Hver av disse strømmene har flere greiner. 

Nå har forskerne for første gang tallfestet hvor mye varme havstrømmene frakter inn og ut av de nordlige havområdene, definert som Polhavet, de nordiske hav og havområdet mellom Nord-Amerika og Grønland.

Inn i og ut av området må det strømme like mye vann. I perioder da det har manglet observasjoner for en strøm, har forskerne derfor kunnet bruke observasjoner av de andre greinene og andre tidsperioder til å beregne hvor mye vann denne strømmen har ført. Alle måledata har en viss usikkerhet, som også kan tallfestes. Innenfor dette spennet kunne de justere hver strøm slik at det totale strømregnskapet gikk i null. 

De nordiske hav
Havstrømmene inn i og ut av de nordlige havområdene. De røde pilene er innstrømningen av varmt vann fra Atlanterhavet. Turkise piler er kaldere vann både inn og ut, og svarte piler utstrømningen i dypet. Pilenes tykkelse indikerer strømstyrken, målt i Sverdrup. Figur fra Tsubouchi et al., 2020. 

Varmeoverskuddet har økt

Varmeregnskapet går aldri opp. Overskuddsvarme fra tropene fordeles mot polene både gjennom havet og atmosfæren. Derfor er det naturlig at det strømmer mer varme inn i de nordlige havområdene enn ut av dem. Men de siste årene har overskuddet økt. 

Mellom 1998 og 2002 steg varmetransporten inn i de nordlige havområdene brått, og siden da har den holdt seg på et nivå som ligger sju prosent høyere enn på 1990-tallet. Overskuddet er stort nok til å forklare oppvarmingen av havet og har trolig også bidratt til å redusere sjøisdekket. 

Varmere vann og sterkere strøm bidro like mye til økningen i varmetransport. Hvor mye vann som strømmer inn, er imidlertid vanskeligere å beregne enn vannets temperatur, som måles direkte. Derfor er temperaturbidraget sikrere. 

Helt sikkert er det uansett at strømmen fra Atlanterhavet og inn i de nordiske hav ikke ble redusert i løpet av måleperioden. Den kan ha økt.

Ingen tegn til svekkelse av omveltningssirkulasjonen

Det meste av vannet som fraktes nordover fra Golfstrømmen, avkjøles, synker og returnerer sørover i dypet. Denne nedsynkningen er kritisk for å opprettholde omveltningssirkulasjonen i Nord-Atlanteren, som Golfstrømmen er en del av. 

Nedsynkningen foregår i tre hovedområder: Labradorhavet, Irmingerhavet og de nordiske hav. Historisk sett har Labradorhavet vært sett på som et hovedområde, men de siste årene har fokus falt på de nordiske hav. 

Klimamodeller indikerer at omveltningen vil bli redusert med 10–30 prosent innen utløpet av århundret hvis den globale oppvarmingen fortsetter. Det har vært diskutert om den sørlige delen av systemet, som vi forbinder med Golfstrømmen, allerede er redusert.

– Vi ser ingen tegn til noen svekkelse i nord, sier Kjetil Våge. – Resultatene våre tilsier at strømmen inn i de nordiske hav er robust. Utstrømningen sørover i dypet har heller ikke blitt svakere. 

Han påpeker at man foreløpig ikke kjenner koblingen mellom den sørlige og den nordlige delen av omveltningssirkulasjonen godt nok til å si noe om hvordan dette vil utvikle seg. 

– Mye spiller inn. Jeg vil ikke gjette, sier han.

Kjetil Våge
Kjetil Våge under et tokt utenfor kysten av Island i 2011. Foto: Sindre Skrede / UiB

Referanser

Tsubouchi, T., Våge, K., Hansen, B. et al. Increased ocean heat transport into the Nordic Seas and Arctic Ocean over the period 1993–2016Nat. Clim. Chang.(2020). https://doi.org/10.1038/s41558-020-00941-3

Østerhus, S. et al. (2019): Arctic Mediterranean exchanges: a consistent volume budget and trends in transports from two decades of observations. Ocean Sci., 15, 379–399, 2019

 

Ny havstrøm satt på kartet

Ny havstrøm satt på kartet Ellen Viste lør, 10/24/2020 - 13:36 Ny havstrøm satt på kartet Golfstrømmen har du hørt om. Island–Færøy-jeten har du garantert aldri hørt om. Denne havstrømmen er nemlig ny på kartet.

Det er ikke hver dag det kommer nye havstrømmer på verdenskartet. I en artikkel publisert i tidsskriftet Nature Communications i går presenterer forskere fra Bergen, USA og Færøyene en nyoppdaget dyphavsstrøm nord for Island og Færøyene.

Strømmen bringer tungt dypvann ut av de nordiske hav og er dermed en del av omveltningssirkulasjonen i Nord-Atlanteren, som vi ellers forbinder med Golfstrømmen i overflaten.

– En del av måledataene vi brukte var gamle, men ingen hadde lagt merke til denne strømmen, sier Stefanie Semper.

Hun er doktorgradsstipendiat ved Bjerknessenteret og Geofysisk institutt ved Universitetet i Bergen og har ledet arbeidet med å identifisere den nye strømmen.

Stefanie Semper
Stefanie Semper har identifisert Island–Færøy-jeten som en del av doktorgraden sin ved Bjerknessenteret og Geofysisk institutt ved UiB. Foto: Helene Asbjørnsen

En viktig strøm i et stort system

Golfstrømmen ble først trykket på et kart i 1786, på initiativ fra Benjamin Franklin. Kartet viser en elv i havet utenfor kysten av Nord-Amerika og østover mot Europa.

Lenge har man visst at Golfstrømmen inngår i en sløyfe der overflatevann strømmer nordover i Atlanterhavet, avkjøles og synker før det strømmer tilbake sørover i dyphavet. Gradvis er det blitt klart at områdene der vannet synker og snur er Labradorhavet, Irmingerhavet og de nordiske hav – en samlebetegnelse for Norskehavet, Grønlandshavet og Islandshavet.

Vann strømmer inn i de nordiske hav på begge sider av Island og fortsetter mot Polhavet og Barentshavet. Noe av vannet blir så kaldt og tungt at det synker og strømmer tilbake ut i Atlanterhavet gjennom Danmarkstredet og Færøybankkanalen, som ligger mellom Færøyene og Skottland. Derfra raser det nedover skråningen mot dypet av Atlanterhavet.

Men ennå er mye ukjent. Det har vært ulike teorier om hvor i de nordiske hav vannet synker og om hvilke veier det så følger ut i Atlanterhavet. Island–Færøy-jeten er det nyeste tilskuddet.

Nordic Seas
Havsirkulasjonen i de nordiske hav. Vann strømmer inn i overflaten på begge sider av Island (røde piler) og tilbake ut igjen i dypet (turkise piler). Den nye Island–Færøy-jeten er merket med "IFSJ". Ill. fra Huang et al., 2020.

Oppdaget at vannet strømmet motsatt vei

I 2011 var forskere fra Bergen på tokt ved Island. De lette etter kilden til Nordislandsjeten, undervannsstrømmen som bringer dypvann ut i Atlanterhavet på vestsiden av Island. Kjetil Våge, forsker ved Bjerknessenteret og Geofysisk institutt ved UiB, var med på toktet, som ble ledet av Bob Pickart fra Woods Hole Oceanographic Institution.

Havforskerne fulgte Nordislandsjeten oppstrøms mot et område nordøst for Island, der de antok den oppsto. Målingene viste at strømmen ganske riktig gradvis ble svakere. Men da de fortsatte videre langs kontinentalsokkelen, ble det igjen bevegelse i dypet under dem.

– Helt uventet så vi at det gikk en tydelig strøm østover, sier Kjetil Våge.

De begynte å danne seg et bilde av området nord for Island som et slags vannskille i havet, med vann som kom nordfra og delte seg i to strømmer: den velkjente Nordislandsjeten vestover mot Danmarkstredet og en ukjent strøm østover i retning av Færøyene.

Kjetil Våge
Kjetil Våge var med på toktet utenfor kysten av Island i 2011. Foto: Sindre Skrede / UiB

Samlet gamle og nye målinger

For å kunne finne ut om de hadde rett, fortsatte de å måle sørøstover langs kontinentalsokkelen. Men etter at de kom hjem, ble disse dataene liggende ubehandlet til Stefanie Semper begynte å analysere dem i fjor.

Færøyske forskere hadde merket seg at vann vestfra nådde nordsiden av Færøyene, men heller ikke de hadde utforsket fenomenet nærmere.

– Ingen av datasettene viste hele strømmen, sier Stefanie Semper. – Men sammen ga de oss muligheten til å trekke ut en sammenhengende historie.

Ved å sammenstille de færøyske dataene og toktmålingene fra 2011, kunne hun identifisere en kontinuerlig strøm ved 800–1000 meters dyp. Vannet strømmer fra nordsiden av Island, langs kontinentalsokkelen og rundt nordsiden av Færøyene, før det fortsetter ut i Atlanterhavet gjennom Færøybankkanalen.

Avslørt av fingeravtrykket

For å kunne kartlegge strømmen, så forskerne ikke bare på strømretningen, men også på selve vannet.

– Vannmassene har sine egne fingeravtrykk, sier Stefanie Semper.

Kombinasjonen av temperaturen og saltinnholdet i sjøvann gjør det mulig å skille vann med ulikt opphav. Sammen med strømmålingene, kunne de bruke disse egenskapene til å spore vannet bakover og videre innover i de nordiske hav.

Parallelt med utforskningen av den nye strømmen har forskere fra de samme institusjonene, sammen med kinesiske forskere, lett etter vannets kilde før det når Island. Også dette arbeidet ble publisert i går.

I denne studien viser forskerne at vannet i strømmen mot Færøyene har de samme egenskapene som vannet som strømmer vest for Island. De to havstrømmene har samme fingeravtrykk, et kjennetegn som kunne spores til det samme området i Grønlandshavet.

Sammen viser de to nye studiene at dypvann fra Grønlandshavet følger undervannsrygger sørover og deler seg i to når det møter kontinentalsokkelen på nordsiden av Island. Den ene greinen når Atlanterhavet gjennom Danmarkstredet, den andre gjennom Færøybankkanalen.

En jetstrøm i havet

Begrepet jetstrøm forbinder man vanligvis med konsentrerte bånd av sterk vind i atmosfæren. Når forskerne her bruker det om en strøm i havet, er det fordi strømmen minner om slike bånd. Men vann er tyngre å flytte enn luft, så i havet går alt saktere enn i atmosfæren.

Sammenlignet med luften i den polare jetstrømmen en mil over Atlanterhavet, som gjerne fyker 50 meter i sekundet, står vannet i Island-Færøy-jeten nesten i ro.

– Ti centimeter per sekund, sier Stefanie Semper. – Maksimalt femten. Likevel transporterer den omtrent like mye vann som alle elvene på jorden til sammen.

De nordiske hav er viktigere enn tidligere antatt

De nordiske hav har alltid vært viktig for norske havforskere, men de siste årene har området fått høyere prioritet også internasjonalt. Om man skal vite hvordan strømsystemet i Atlanterhavet påvirkes av klimaendringer, må man vite hvordan nedsynkningen i nord bidrar.

I den forbindelse har det vært fokusert mye på Golfstrømmen i den sørlige delen av sløyfen og på nedsynkningen i Labradorhavet, som har antatt er vel så viktig. Nyere funn har flyttet oppmerksomheten mot de nordiske hav.

Nå håper Stefanie Semper og kollegene å kunne se nærmere på hvordan vannet kommer fra Grønlandshavet til nordsiden av Island og på hvorfor strømmen deler seg der.

– Du tenker du svarer på et spørsmål, sier hun. – Nå har vi enda flere.

Referanser

Semper, S., Pickart, R.S., Våge, K. et al. The Iceland-Faroe Slope Jet: a conduit for dense water toward the Faroe Bank Channel overflow. Nat Commun 11, 5390 (2020).

Huang, J., Pickart, R.S., Huang, R.X. et al. Sources and upstream pathways of the densest overflow water in the Nordic Seas. Nat Commun 11, 5389 (2020).

En ny gjennomgang av hvor mye isen på Grønland og Antarktis bidrar til økt havnivå, viser at smeltevann fra iskappene kan bidra med et globalt gjennomsnitt på rundt 38 cm ved slutten av dette århundret, dersom utslippene holder fram som nå.  

– Det nye ved denne undersøkelsen er at vi nå klarer å fange flere usikkerheter, sier Heiko Goelzer, forsker ved NORCE og Bjerknessenteret.

Klimaendringar sett gjennom plantene sine augo

Klimaendringar sett gjennom plantene sine augo Anonymous (ikke bekreftet) man, 08/31/2020 - 14:03 Klimaendringar sett gjennom plantene sine augo Det kan vera vanskeleg å spå korleis klimaendringar påverkar artsmangfald. Ny forsking fra Universitetet i Bergen kan gjera det lettare å seia noko meir sikkert om framtidsnaturen.

Av Jens Helleland Ådnanes, Universitetet i Bergen

Fleire feltstudier dokumenterer korleis endringar i temperaturar og nedbør kan endra mangfaldet av artar i naturen. Likevel viser desse funna ofte at graden eller retninga på desse endringane varierer mellom dei forskjellige feltområda. 

– Vi er jo opptatte av korleis naturen og økosystema reagerer på klima og miljøendringar. Men svara vi får er ofte at "det spørst". Den same klimaendringa kan ha heilt forskjellig effekt i Arktis og ved ekvator - eller på Vestlandet eller Austlandet, forklarer professor og planteøkolog Vigdis Vandvik. 

Ho er hovudforfattaren for ein artikkel publisert i det vitskaplege tidsskriftet The Proceedings of the National Academy of Sciences (PNAS). 

Ser verda gjennom plantebriller

I artikkelen viser forskarane korleis desse komplekse responsane på klimaendringar kan gjerast enklare. 

– Vår forsking hjelper oss til å forstå kvifor og korleis det er slik. Enkelt sagt handlar det om at naturen ser verda gjennom litt andre briller enn oss - planter har ikkje termometer, og dei responderer ikkje lineært på grader celsius eller millimeter nedbør, seier professoren. 

Ved å skalere klima og klimaendringane etter dei faktorane plantene faktisk reagerer på kan forskarane forenkla svært komplekse mønster, forstå mekanismar, og spå betre om framtida. 

– Ved å ta plantene sitt perspektiv på klimaendringane fann vi at fjellengene våre, frå Voss til Vestre Slidre, responderer på klimaendringar – men det er ikkje temperatur eller nedbør i seg sjølv som er årsaken. Det er indirekte effektar, gjennom endringar i konkurranseforhold mellom artane, som styrer dei klimaresponsane/mønstra vi ser i naturen, forklarar Vandvik.

Feltarbeid
Stipendiat Ragnhild Gya analyserer vegetasjon. – Dette er på eit oppfølgingsprosjekt etter prosjektet artikkelen er basert på. Vi fant jo ut at artar frå låglandet som sprer seg til fjellet virkar negativt på fjellplantene. Dette inspirerte eit nytt prosjekt der vi ser på effektane av desse plantene - vi flyttar dei til fjells og "ser kva som skjer", seier Vigdis Vandvik. 
Foto/ill.: 
Vigdis Vandvik, UiB

Flytta heile grasmarker

Forskarane var i felt på tolv forskjellige stadar med varierte temperaturar og nedbørsmengder. Ved å transplantera komplette grasmarker i tråd med dei regionale klimamodellane, kunne forskarane spora korleis forholdet mellom artane endra seg i tråd med endra klimaforhold. 

– Interessant nok spelar både mosar og framande artar ei nøkkelrolle: eit varmare klima gjer at nye varmekjære artar kan spre seg i fjellet. Desse  har mykje  større negativ effekt på fjellartane enn klima i seg sjølv. Men mosane i fjellet kan utestenga dei framande artane - og hjelpa fjellplanter til å overleve klimaendringane! Nokre små superheltar der, altså, seier planteøkologen. 

Vandvik ser fram til å forska vidare med utgangspunkt i den nye innsikta ho har kome fram til. 

Neste steg er tatt

– Vi er alt no i gang med neste steg! Vi skal sjå på kva som gjer at somme fjellartar er meir sårbare enn andre for desse nye naboane, og vi skal rekne på kor lang tid det tar før fjellplanter forsvinn.

Dei er óg i gang med eit felteksperiment der låglandsplanter med dei "snillaste og slemmaste" eigenskapane flyttast opp i fjellet. 

– Då kan vi studere i detalj kvifor fjellplanter ikkje kan leve med dei nye naboane sine, seier Vandvik.

Vegetasjonsanalyse
Kari Klanderud analyserer vegetasjon og identifiserer alle artar og måler mengdeforhold. Dette er dataene som ligger under analysane forskarane har gjort. Foto/ill.: Vigdis Vandvik, UiB

 

 

Varsler jordens klima på kort sikt

Varsler jordens klima på kort sikt Anonymous (ikke bekreftet) tor, 07/09/2020 - 09:49 Varsler jordens klima på kort sikt Nesten over alt på jorden vil gjennomsnittstemperaturen trolig bli høyere i de kommende fem årene enn den har vært de siste tiårene. Det kommer frem i en ny rapport med klimavarsler for den nærmeste fremtiden.

Av Henrike Wilborn, Nansen senter for miljø og fjernmåling

Hvordan vil jordens overflatetemperatur og andre klimaforhold endre seg i løpet av de kommende fem årene? Den første rapporten om klimaet for de nærmeste årene utgitt av Verdens meteorologiorganisasjon (WMO) ble lansert i dag. 

Rapporten inneholder klimaprediksjoner for 2020 og den nærmeste fremtiden, og forskere fra Bjerknessenteret, Nansensenteret og Universitetet i Bergen har bidratt. Bergen har alltid vært en viktig del av miljøet som forsker på meteorologi og klima, og slik er det fremdeles.

Dobbelt så mye varmere i Arktis

Resultatene i WMO-rapporten er urovekkende, men ikke uventede. Sammenlignet med den nære fortiden, definert som gjennomsnittet fra 1981 til 2010, vil temperaturen over store landområder i den nordlige hemisfære trolig være 0,8 grader høyere. 

Samtidig vil oppvarmingen i Arktis være dobbelt så høy som det globale gjennomsnittet. Dette så vi allerede i vår, med en rekordsterk hetebølge i Sibir.
I perioden 2020–2024 er det varslet at temperaturen vil være høyere enn i nær fortid nesten over alt på jorden. I tillegg slås det i rapporten fast at den globale temperaturen hvert år vil være minst én grad høyere enn før den industrielle revolusjon på 1800-tallet.

Trykk og nedbør er andre forhold som diskuteres i rapporten, som kan leses her.

WMO-rapport
Varslet temperaturavvik [grader Celsius] i 2020–2024 (venstre) og 2020 (høyre), sammenlignet med årene 1981–2010. Kun i deler av Sør-Indiahavet og Stillehavet blir det litt kaldere enn da. Fra WMO-rapporten Global Annual to Decadal Climate Update.

Bygger på klimamodeller og observasjoner

Det blir unektelig varmere. Men hvordan har forskerne som bidrar til denne rapporten funnet ut dette? Hvordan fungerer klimavarsling på så kort tidsskala?

Ti forskningssentre har bidratt med data til et sammenhengende sett med klimavarsler for året 2020 og perioden 2020–2024. Hvert av dem har brukt sin egen klimamodell for å lage prediksjoner for den nærmeste fremtiden. Resultater fra de ulike modellene ble sammenlignet og kombinert.

Slike klimaprediksjoner skiller seg fra mer langsiktige klimaprojeksjoner, som kun tar eksterne endringer som økende CO2 med i betraktningen. Klimaprediksjoner tar i tillegg hensyn til at klimaet på kort tidsskala også varierer naturlig. Noen av disse variasjonene er godt nok kjent til at de kan inkluderes når man skal lage klimavarsler. 

Francois Counillon
François Counillon

Gjennom klimavarslingsenheten, Bjerknes Climate Prediction Unit (BCPU) er Bjerknessenteret et av de ti forskningssentrene som har bidratt til rapporten. Forskerne i BCPU har utviklet og brukt modellen Norwegian Climate Prediction Model (NorCPM), kombinert med observasjoner. Gjennom de siste tiårene har Nansensenteret utviklet en metode som har gjort det mulig å forbedre havmodeller ved å inkludere observasjoner. Denne ekspertisen ble nå brukt til å optimalisere klimaprediksjonene.

–  Modelloppsettet vårt gjør det mulig å redusere usikkerheten i varsler av klimaendringer i nær fremtid, sier François Counillon fra Nansensenteret og Bjerknessenteret.

Counillon er en av forskerne som har bidratt til rapporten. 

– På denne måten kan vi bedre varsle komponenter i klimasystemet som endrer seg sakte. Det er et nytt forskningsfelt med et enormt potensial, sier han. 

En ung vitenskap

Klimaprediksjon er en ung klimavitenskap og utvikler seg raskt. Nøyaktigheten i klimaprediksjonene vil bli bedre i fremtiden – ikke ulikt utviklingen av værvarsler i de foregående tiårene. I dag er samfunnet ekstremt avhengig av presise værvarsler. I fremtiden kan klimaprediksjoner på kort tidsskala, som år og tiår, bli like viktige som værvarsler for hver og en av oss.

Klimaprediksjoner kan bli en bro mellom værvarsler og langsiktige klimaprojeksjoner. Et annet bergensbasert initiativ som jobber parallelt med BCPU, er Climate Futures, ledet av NORCE. Slik brobygging er et mål for Climate Futures, som tidligere i sommer fikk støtte fra Norges forskningsråd for å bli et Senter for fremragende innovasjon.

Klimaprediksjoner møter større og større interesse i offentligheten, og WMO-rapporten som nettopp er publisert er av uvurderlig betydning, ikke bare for forskerne. 

Noel Keenlyside
Noel Keenlyside is the leader of the Bjerknes Centre Prediction Unit.

– Denne første rapporten er viktig fordi den markerer at WMO anerkjenner betydningen av slike varsler for samfunnet, oppsummerer BCPU-leder Noel Keenlyside fra Universitetet i Bergen, Nansensenteret og Bjerknessenteret. 

– Slike varsler vil være helt nødvendige for avgjørelser i et vidt spenn av offentlig og privat virksomhet og vil bidra til en bærekraftig samfunnsutvikling.

Det er en spennende tid for utviklingen av kortsiktige, modellbaserte klimavarsler, og det er oppmuntrende å vite at bergensforskere fortsetter å jobbe på grensen mot det ukjent, akkurat som fortidspionerer som Bjerknes og Nansen. 

WMOs omtale av rapporten kan du lese her

Vatnet langs Norskekysten blir lettare

Vatnet langs Norskekysten blir lettare gudrun man, 07/06/2020 - 09:40 Vatnet langs Norskekysten blir lettare Vatnet på botn av Masfjorden har ikkje blitt skifta ut sidan 2011. Ny forsking viser at vatnet langs Norskekysten vert lettare. Det er dårleg nytt for vasskvaliteten i visse fjordar.

– Botnvatnet frå Haugsværfjorden luktar rotne egg, seier Elin Darelius, førsteamanuensis ved Geofysisk institutt, UiB og forskar ved Bjerknessenteret.

Haugsværfjorden er den eine av dei to fjordarmane inst i Masfjorden. Oksygenet i vatnet er brukt opp, det er mange år sidan vatnet nedst i fjordbassenget inne er skifta ut.

I dei djupe fjordane langs Vestlandet, vert vatnet på botn av fjordbassenga innestengt av fjordterskelen lengst ute mot kysten. Om ikkje vatnet vert skifta ut, vil oksygenet i vatnet over tid bli brukt opp, og vasskvaliteten vert dårlegare.

Kor ofte vatnet i fjordbassenget vert skifta ut, varierer frå fjord til fjord. Nokre stader går det berre eit par veker, andre stader fleire år. Masfjorden nord for Bergen, er ein fjord i den siste kategorien.

– Kor ofte ein får ei utskifting, handlar både om kor effektivt lett vatn blandast ned i fjordbassenget, i tillegg til kor stor variasjon det er på tettleiken i vatnet langs kysten, fortel Darelius.

skisse fjordterskel
skisse over fjordterskel og tungt vatn som renn inn i fjordbassenget
Ferskvatn er lettare enn saltvatn. Difor flyt smeltevatn og elvevatn i fjordane øvst, og ferskvatnet blandar seg over tid nedover i fjordbassenget. For å få skifta ut vatnet i fjordbassenget, må vatnet ute ved fjordterskelen vere tyngre enn vatnet i fjordbassenget, slik at det strøymer inn i fjorden. Illustrasjon: Elin Darelius

Stilleståande vatn

Elin Darelius har undersøkt data frå åtte hydrografiske stasjonar langs Norskekysten, tilbake til 1930. Tettleiken vatnet har på eit gitt djup, varierer frå måling til måling. Det heng saman til dømes med kva retning vinden bles frå. Om kystvatn som er tyngre enn vatnet i fjordbassenget, kjem opp til nivået der fjordterskelen er, kan det renne over og inn i fjordbassenget. Då får ein ei utskifting i fjorden.  

Men observasjonane frå seks av dei sørlegaste stasjonane viser at vatnet ved terskelnivå ikkje like ofte før får like høg tettleik, det er ikkje tungt nok til å renne over fjordterskelen. Etter 1990 er det ein synkande trend – og det er dårleg nytt for vasskvaliteten i mange fjordar.

Darelius har satt observasjonane inn i ein statistisk modell, som no er publisert i tidsskriftet Estuarine, Coastal and Shelf Science.

Elin Darelius skriv sjølv om forskninga på bloggen (engelsk)

Det er fleire element som påverkar tettleiken i vatnet. Varmare vatn er lettare, og når vatnet i havstraumane nordover langs Norskekysten vert varmare, vert det også lettare. Eit anna element er vindretning ved kysten. Nordavinden dreg overflatevatnet vekk frå kysten og tyngre vatn frå djupet, vert løfta opp.

Først når ein har rette forhold i vassmassane på kvar side av fjordterskelen, vert vatnet inne i fjordbassenget skifta ut.

 

Tilfellet Masfjorden

For Masfjorden viser resultatet at det i gjennomsnitt går to år lengre mellom kvar utskiftning av botnvatn i Masfjorden, og at det no er seks gongar større sjanse for at vatnet blir meir enn ti år i fjorden no, enn før 1990.  

Sist botnvatnet i Masfjorden vart skifta ut, var i 2011. 


– Data frå tokt no tidleg i juni, viser at det ikkje har vore utskifting i fjorden så langt i år. Oksygenkonsentrasjonen er i dei djupaste delane av fjorden på det lågaste nivået som er målt sidan 1975. I Haugsværfjorden er det ikkje oksygen i botnvatnet det heile, seier Darelius.

I Masfjorden har ein i ei årrekke hatt tokt for biologistudentar, og i dei seinare åra for oseanografistudentar. Det gjer at ein har ei lang dataserie over vasskvalitet i fjorden. Oksygenkonsentrasjonen i dei djupaste delane av fjorden er heilt nede på 2,3 ml/l. Mellom 1975 og 1990 ligg konsentrasjonen i snitt mellom 4 og 5 ml/l.

Terskelen inn til Masfjorden er 70 meter djup. Inne i fjorden er djupet på 300 meter, og på 200 meters djup byrjar oksygennivået å synke drastisk. Darelius påpeiker at dei øvre vasslaga oftare vert skifta ut.

I Haugsværfjorden inst i Masfjorden, er terskelen ikkje djupare enn 10-20 meter. Fjorden er 120 meter djup her inne, og allereie på 60-70 meters djup er det slutt på oksygen.

Ei gruppe biologar ved UiB har også sett på problem for levande liv i fjordar der oksygennivået går ned. Her finn du artikkelen (engelsk)

 

Vassprøvar med indikator på oksygennivå
Null oksygen: Vassprøvar frå Haugsværfjorden med tilsett indikator for oksygen. Dei blå flaskene til høgre i biletet indikerer at det ikkje er oksygen i vatnet. I Haugsværfjorden skal ein ikkje lengre ned enn 30-40 meter før det er ikkje er oksygen i vatnet. Foto: Elin Darelius 

Referanse

Darelius, E.: On the effect of climate trends in coastal density on deep water renewal frequency in sill fjords—A statistical approach. Estuar. Coast. Shelf Sci. 243 (2020), doi:10.1016/j.ecss.2020.106904.

Et ukjent antall organismer lever i havets skumringssone, mellom den lyse overflaten og det mørke dyphavet. Området er svært viktig for havets velferd, men området er fremdeles et mysterium. I en kommentar i Nature, ber forskere nå om felles innsats for å vite mer.

Eirik Vinje Galaasen og kollegaer med nytt funn publisert i Science. De viser at gradvis oppvarming kan utløse store endringer i havsirkulasjon slik at den blir mer variabel og kaotisk.

Nesten 27.000 år etter vulkanen Hekla hadde et voldsomt utbrudd på Island, fant vi igjen spor av aske i sedimenter fra havbunnen utenfor Grønland. Det gir oss et viktig kronologisk holdepunkt når vi pusler sammen klimahistorien.